WebCPC CPC COOPERATIVE PATENT CLASSIFICATION

G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS

G06N 3/00 Computer systems based on biological models (analogue computers simulating functional aspects of living beings G06G 7/60)

G06N 3/002 ・{Biomolecular computers, i.e. using biomolecules, proteins, cells (using DNA G06N 3/123; using neurons G06N 3/061)}

G06N 3/004 ・{Artificial life, i.e. computers simulating life}

G06N 3/006 ・・{based on simulated virtual individual or collective life forms , e.g. single "avatar", social simulations, virtual worlds (computer games A63F 13/00; medical simulations G06F 19/00; information retrieval G06F 17/30873; image processing G06T; telecommunication protocols H04L 29/06034)}

G06N 3/008 ・・{based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. robots replicating pets or humans in their appearance or behavior (toys or dolls A63H 3/00; industrial robot control G05B 19/00, B25J 9/00; artificial neural networks G06N 3/00; rule based artificial intelligence G06N 5/00)}

G06N 3/02 ・using neural network models (for adaptive control G05B 13/00; for image pattern matching G06K 9/00; for image data processing G06T 1/20; for phonetic pattern matching G10L 15/16)

G06N 3/04 ・・Architectures, e.g. interconnection topology

G06N 3/0409 ・・・{Adaptive Resonance Theory [ART} networks]

G06N 3/0418 ・・・{using chaos or fractal principles}

G06N 3/0427 ・・・{in combination with an expert system}

G06N 3/0436 ・・・{in combination with fuzzy logic}

G06N 3/0445 ・・・{Feedback networks, e.g. hopfield nets, associative networks}

G06N 3/0454 ・・・{using a combination of multiple neural nets}

G06N 3/0463 ・・・{Neocognitrons}

G06N 3/0472 ・・・{using probabilistic elements, e.g. p-rams, stochastic processors}

G06N 3/0481 ・・・{Non-linear activation functions, e.g. sigmoids, thresholds}

G06N 3/049 ・・・{Temporal neural nets, e.g. delay elements, oscillating neurons, pulsed inputs}

G06N 3/06 ・・Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons

G06N 3/061 ・・・{using biological neurons, e.g. biological neurons connected to an integrated circuit}

G06N 3/063 ・・・using electronic means

G06N 3/0635 ・・・・{using analogue means}

G06N 3/067 ・・・using optical means

G06N 3/0675 ・・・・{using electro-optical, acousto-optical or opto-electronic means}

G06N 3/08 ・・Learning methods

G06N 3/082 ・・・{modifying the architecture, e.g. adding or deleting nodes or connections, pruning}

G06N 3/084 ・・・{Back-propagation}

G06N 3/086 ・・・{using evolutionary programming, e.g. genetic algorithms}

G06N 3/088 ・・・{Non-supervised learning, e.g. competitive learning}

G06N 3/10 ・・Simulation on general purpose computers

G06N 3/105 ・・・{Shells for specifying net layout}

G06N 3/12 ・using genetic models

G06N 3/123 ・・{DNA computers, i.e. information processing using biological DNA}

G06N 3/126 ・・{Genetic algorithms, i.e. information processing using digital simulations of the genetic system}

G06N 5/00 Computer systems utilising knowledge based models

G06N 5/003 ・{Dynamic search techniques, heuristics, branch-and-bound (G06F 9/44L3B, G06N 5/046 take precedence; for optimisation G06Q 10/00B; for game playing G06F 19/00B)}

G06N 5/006 ・・{Automatic theorem proving}

G06N 5/02 ・Knowledge representation {(G06N 5/04 takes precedence)}

G06N 5/022 ・・{Knowledge engineering, knowledge acquisition}

G06N 5/025 ・・・{Extracting rules from data (learning in general G06F 15/18)}

G06N 5/027 ・・{Frames}

G06N 5/04 ・Inference methods or devices

G06N 5/041 ・・{Abduction}

G06N 5/042 ・・{Backward inferencing}

G06N 5/043 ・・{Distributed expert systems, blackboards}

G06N 5/045 ・・{Explanation of inference steps}

G06N 5/046 ・・{Forward inferencing, production systems}

G06N 5/047 ・・・{Pattern matching networks, RETE}

G06N 5/048 ・・{Fuzzy inferencing}

G06N 7/00 Computer systems based on specific mathematical models

G06N 7/005 ・{Probabilistic networks}

G06N 7/02 ・using fuzzy logic (G06N 3/00, G06N 5/00 take precedence; for adaptive control G05B 13/00)

G06N 7/023 ・・{Learning or tuning the parameters of a fuzzy system}

G06N 7/026 ・・{Development tools for entering the parameters of a fuzzy system}

G06N 7/04 ・・Physical realisation

G06N 7/043 ・・・{Analogue or partially analogue implementation}

G06N 7/046 ・・・{Implementation by means of a neural network (neural networks using fuzzy logic G06N 3/0436)}

G06N 7/06 ・・Simulation on general purpose computers

G06N 7/08 ・using chaos models or non-linear system models

G06N 99/00 Subject matter not provided for in other groups of this subclass

G06N 99/002 ・{Quantum computers, i.e. information processing by using quantum superposition, coherence, decoherence, entanglement, nonlocality, teleportation}

G06N 99/005 ・{Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run (neural networks G06N 3/02; knowledge based models G06N5; fuzzy logic systems G06N 7/02; adaptive control systems G05B 13/00)}

G06N 99/007 ・{Molecular computers, i.e. using inorganic molecules (using biomolecules G06N 3/002)}

--- Edited by Muguruma Professional Engineer Office(C), 2013 ---